Поговорим о том, чем метеор отличается от метеорита, чтобы познать загадочность и неповторимость звездного неба. Звездам люди доверяют свои самые заветные желания, но речь пойдет о других небесных телах.

Особенности метеора

Понятие «метеор» связано с явлениями, происходящими в земной атмосфере, при которых в нее со значительной скоростью вторгаются инородные тела. Частицы настолько малы, что происходит их быстрое разрушение под действием трения.

Попадают ли на метеоры? Описание этих небесных тел, предлагаемое астрономами, ограничивается указанием кратковременной светящейся полоски света на звездном небе. Ученые называют их «падающими звездами».

Характеристика метеоритов

Метеорит является остатками метеорного тела, которое попадает на поверхность нашей планеты. В зависимости от состава, существует подразделение этих небесных тел на три вида: каменные, железные, железно-каменные.

Отличия между небесными телами

Чем метеор отличается от метеорита? Данный вопрос долгое время оставался для астрономов загадкой, поводом для проведения наблюдений и исследований.

Метеоры после вторжения в земную атмосферу лишаются своей массы. До процесса сгорания масса этого небесного объекта не превышает десяти граммов. Эта величина настолько ничтожна в сравнении с размерами Земли, что от падения метеора никаких последствий не будет.

Метеориты, попадающие на нашу планету, имеют существенный вес. Челябинский метеорит, который упал на поверхность 15 февраля 2013 года, по оценкам экспертов, имел вес около десяти тонн.

Диаметр данного небесного тела составлял 17 метров, скорость движения превышала 18 км/с. Челябинский метеорит начал взрываться на высоте около двадцати километров, а общая продолжительность его полета не превысила сорока секунд. Мощность взрыва в тридцать раз превысила взрыв бомбы в Хиросиме, в результате образовались многочисленные куски и осколки, которые упали на челябинскую землю. Итак, рассуждая над тем, чем метеор отличается от метеорита, прежде всего, отметим их массу.

Самым крупным метеоритом стал объект, обнаруженный в начале двадцатого века в Намибии. Его вес составлял шестьдесят тонн.

Частота падения

Чем метеор отличается от метеорита? Продолжим разговор об отличиях между этими небесными телами. В атмосфере земли только за сутки наблюдается вспыхивание сотен миллионов метеоров. В случае ясной погоды можно за час наблюдать около 5-10 «падающих звезд», которые на самом деле являются метеорами.

Метеориты также довольно часто попадают на нашу планету, но основная их часть сгорает еще во время пути. За сутки о поверхность земли ударяется несколько сотен таких небесных тел. В связи с тем что основная их часть приземляется в пустыне, морях, океанах, их не обнаруживают исследователи. Ученым за год удается изучать лишь небольшое количество этих небесных тел (до пяти штук). Отвечая на вопрос о том, что общего у метеоров и метеоритов, можно отметить их состав.

Опасность падения

Небольшие частицы, входящие в состав метеорного тела, способны наносить серьезный вред. Они приводят в негодность поверхность космических аппаратов, могут выводить из строя работу их энергетических систем.

Сложно оценить ту реальную опасность, которую несут метеориты. На поверхности планеты после их падения остается огромное количество «рубцов» и «ран». Если такое небесное тело имеет большие размеры, после его удара о Землю возможно смещение оси, что негативно отразится на климате.

Для того чтобы в полной мере оценить всю масштабность проблемы, можно привести пример падения Тунгусского метеорита. Он упал в тайгу, причинив серьезный ущерб территории в несколько тысяч квадратных километров. Если бы данная территория была заселена людьми, можно было бы вести речь о настоящей катастрофе.

Метеор является световым явлением, которое часто наблюдается на звездном небе. В переводе с греческого языка это слово означает «небесный». Метеорит представляет собой твердое тело, имеющее космическое происхождение. В переводе на русский язык данный термин звучит как «камень с неба».

Научные исследования

Для того чтобы понять, чем кометы отличаются от метеоритов и метеоров, проанализируем результаты научных исследований. Астрономам удалось выяснить, что после попадания метеора в земные слои атмосферы происходит их вспыхивание. В процессе сгорания остается светящийся след, состоящий из Частички метеора угасают примерно на высоте семидесяти километров от Комета оставляет на звездном небе «хвост». Ее основой является ядро, включающее в себя пыль и лед. Кроме того, в комете могут располагаться следующие вещества: углекислый газ, аммиак, органические примеси. Пылевой хвост, который она оставляет при своем движении, состоит из частиц газообразных веществ.

Попадая в верхние слои атмосферы Земли, осколки разрушенных космических тел или частицы пыли нагреваются от трения и вспыхивают. Самые маленькие из них тут же сгорают, а большие, продолжая падать, оставляют за собой светящийся след ионизированного газа. Они гаснут, достигая расстояния, примерно равного семидесяти километрам от поверхности земли.

Продолжительность вспышки определяется массой этого небесного тела. В случае сгорания крупных метеоров можно любоваться яркими вспышками несколько минут. Именно этот процесс астрономы называют звездным дождем. В случае метеорного ливня за один час можно увидеть около ста сгорающих метеоров. Если у небесного тела крупные размеры, в процессе продвижения сквозь плотную земную атмосферу, он не сгорает и попадает на поверхность планеты. До Земли доходит не больше десяти процентов от первоначального веса метеорита.

В составе железных метеоритов содержится значительное количество никеля и железа. Основой каменных небесных тел являются силикаты: оливин и пироксен. Железно-каменные тела имеют почти равное количество силикатов и никелистого железа.

Заключение

Люди во все времена своего существования пытались изучать небесные тела. По звездам составляли календари, определяли погодные условия, пытались предсказывать судьбы, испытывали страх перед звездным небом.

После появления различных видов телескопов астрономам удалось разгадать многие тайны и загадки звездного неба. Были подробно изучены кометы, метеоры, метеориты, определены основные отличительные и сходные черты между этими небесными телами. Например, самым крупным метеоритом, попавшим на поверхность земли, был железный Гоба. Его ученые обнаружили в Юной Америке, вес его составил порядка шестидесяти тонн. Самой известной в Солнечной системе считают комету Галлея. Именно она связана с открытием закона всемирного тяготения.

Метеором называют частицы пыли или осколки космических тел (комет или астероидов), которые при входе в верхние слои атмосферы Земли из космоса, сгорают, оставляя после себя полоску света, которую мы наблюдаем. Популярное название метеора – это падающая звезда.

Земля, всё время подвергается постоянной бомбардировке объектами из космоса. Они различаются по размеру, от камней весом в несколько килограммов, до микроскопических частиц, весящих меньше миллионной доли грамма. По оценкам некоторых специалистов, Земля в течение года захватывает больше 200 млн. кг различного метеорного вещества. А в сутки вспыхивает около одного миллиона метеоров. Всего лишь десятая часть их массы достигает поверхности в форме метеоритов и микрометеоритов. Остальная часть, сгорает в атмосфере, порождая метеорные следы.

Метеорное вещество входит обычно в атмосферу со скоростью около 15 км/сек. Хотя, в зависимости от направления по отношению к движению Земли, скорость может колебаться от 11 до 73 км/с. Частицы среднего размера, нагреваясь от трения испаряются, давая вспышку видимого света на высоте около 120 км. Оставляя кратковременный след ионизированного газа и гаснут к высоте порядка 70 км. Чем больше масса метеорного тела, тем ярче он вспыхивает. Эти следы, сохраняемые 10–15 минут, могут отражать радиолокационные сигналы. Поэтому, для обнаружения метеоров, которые слишком слабы для визуального наблюдения (а также метеоров, появляющихся при дневном свете), используют методы радиолокации.

Этот метеорит никто не наблюдал при падении. Его космическая природа установлена на основании изучения вещества. Такие метеориты называют находками, и они составляют около половины мировой коллекции метеоритов. Другая половина – падения, «свежие» метеориты, поднятые вскоре после того, как они упали на Землю. К ним относится метеорит Пикскилл, с которого начался наш рассказ о космических пришельцах. Падения имеют для специалистов большой интерес, чем находки: о них можно собрать некоторую астрономическую информацию, а вещество их не изменено земными факторами.

Метеоритам принято давать имена по географическим названиям мест, соседствующих с местом падения или находки. Чаще всего это название ближайшего населенного пункта (например, Пикскилл), но выдающимся метеоритам присваивают более общие имена. Два самых крупных падения XX в. произошли на территории России: Тунгусское и Сихотэ-Алинское.

Метеориты делятся на три больших класса: железные, каменные и железо-каменные. Железные метеориты состоят в основном из никелистого железа. В земных горных породах естественный сплав железа с никелем не встречается, так что присутствие никеля в кусках железа указывает на его космическое (или промышленное!) происхождение.

Включения никелистого железа есть в большинстве каменных метеоритов, поэтому космические камни, как правило, тяжелее земных. Главные же их минералы – силикаты (оливины и пироксены). Характерным признаком основного типа каменных метеоритов – хондритов – является наличие внутри них округлых образований – хондр. Хондриты состоят из того же вещества, что и весь остальной метеорит, но выделяются на его срезе в виде отдельных зернышек. Их происхождение пока не вполне ясно.

Третий класс – железокаменные метеориты – это куски никелистого железа с вкраплениями зерен каменистых материалов.

Вообще метеориты состоят из тех же элементов, что и земные горные породы, но сочетания этих элементов, т.е. минералы, могут быть и такими, какие на Земле не встречаются. Это связано с особенностями образования тел, породивших метеориты.

Среди падений преобладают каменистые метеориты. Значит, таких кусков больше летает в космосе. Что касается находок, то здесь преобладают железные метеориты: они прочнее, лучше сохраняются в земных условиях, резче выделяются на фоне земных горных пород.

Метеориты являются осколками малых планет – астероидов, которые населяют в основном зону между орбитами Марса и Юпитера. Астероидов много, они сталкиваются, дробятся, изменяют орбиты друг друга, так что некоторые осколки при своем движении иногда пересекают орбиту Земли. Эти осколки и дают метеориты.

Организовать инструментальные наблюдения падений метеоритов, с помощью которых можно с удовлетворительной точностью вычислить их орбиты, очень трудно: само явление очень редкое и непредсказуемое. В нескольких случаях это удалось сделать, и все орбиты оказались типично астероидными.

Интерес астрономов к метеоритам был вызван в первую очередь тем, что долгое время они оставались единственными образцами внеземного вещества. Но и сегодня, когда вещество других планет и их спутников становится доступным лабораторному исследованию, метеориты не потеряли своего значения. Вещество, составляющее крупные тела Солнечной системы, подвергалось длительному преобразованию: оно плавилось, разделялось на фракции, вновь застывало, образуя минералы, не имеющие уже ничего общего с тем веществом, из которого все образовалось. Метеориты же являются обломками мелких тел, которые такой сложной истории не прошли. Одни из типов метеоритов – углистые хондриты – вообще представляют собой слабоизмененное первичное вещество Солнечной системы. Изучая его, специалисты узнают, из чего образовались крупные тела Солнечной системы, в том числе и наша планета Земля.

Метеорный поток

Основная часть метеорного вещества в Солнечной системе, обращается вокруг Солнца по определенным орбитам. Характеристики орбит метеорных роев могут быть рассчитаны по наблюдениям метеорных следов. Используя этот способ, было показано, что многие метеорные рои имеют те же самые орбиты, что и известные нам кометы. Эти частицы могут быть распределены по всей орбите или сконцентрированы в отдельных скоплениях. В частности, молодой метеорный рой может долго оставаться с концентрированным около родительской кометы. Когда при движении по орбите, Земля пересекает такой рой, в небе нами наблюдается метеорный поток. Эффект перспективы, порождает оптическую иллюзию того, что метеоры, которые в действительности движутся по параллельным траекториям, кажутся исходящими из одной точки в небе, которую принято называть радиантом. Эта иллюзия и есть эффект перспективы. В действительности эти метеоры порождаются частицами вещества, входящими в верхние слои атмосферы по параллельным траекториям. Это великое множество метеоров, наблюдаются в течение ограниченного периода времени (обычно несколько часов или дней). Известно множество ежегодных потоков. Хотя только некоторые из них порождают метеорные дожди. С особенно плотным роем частиц Земля сталкивается очень редко. И тогда может возникнуть исключительно сильный поток с десятками или сотнями метеоров каждую минуту. Обычно хороший регулярный поток дает около 50 метеоров в час.

В дополнение ко множеству регулярных метеорных потоков, в течение года наблюдаются и спорадические метеоры. Они могут прийти с любого направления.

Микрометеорит

Это частица метеоритного вещества, которая настолько невелика, что теряет свою энергию еще до того, как она могла бы воспламениться в атмосфере Земли. Микрометеориты выпадают на Землю как дождь мельчайших пылевых частиц. Количество вещества, ежегодно выпадающего на Землю в такой форме, оценивается в 4 млн. кг. Размер частиц обычно меньше 120 мкм. Такие частицы удается собрать в ходе космических экспериментов, а железные частицы благодаря их магнитным свойствам могут быть обнаружены и на поверхности Земли.

Происхождение метеоритов

Если имеются сведения об очень ярком болиде, который мог завершиться выпадением метеорита, следует постараться собрать наблюдения этого болида случайными очевидцами на возможно большей площади. Нужно, чтобы очевидцы с места наблюдения показали путь болида на небе. Желательно измерить горизонтальные координаты (азимут и высоту) каких-нибудь точек этого пути (начала и конца). При этом используются простейшие приборы: компас и эклиметр – инструмент для измерения угловой высоты (это по сути дела транспортир с закрепленным в его нулевой точке отвесом). Когда такие измерения выполнены в нескольких пунктах, по ним можно построить атмосферную траекторию болида, а затем поискать метеорит вблизи проекции на землю ее нижнего конца.

Сбор сведений об упавших метеоритах и поиск их образцов являются увлекательными задачами для любителей астрономии, но сама постановка таких задач во многом связана с некоторым везением, удачей, которую важно не упустить. А вот наблюдения метеоритов могут проводиться систематически и приносить ощутимые научные результаты. Разумеется, такой работой занимаются и профессиональные астрономы, вооруженные современной аппаратурой. Например, в их распоряжении имеются радиолокаторы, при помощи которых метеоры можно наблюдать даже днем. И все же правильно организованные любительские наблюдения, которые к тому же не требуют сложных технических средств, до сих пор играют определенную роль в метеоритной астрономии.

Метеориты: падения и находки

Нужно сказать, что научный мир вплоть до конца XVIII в. относился скептически к самой возможности падения с неба камней и кусков железа. Сообщения о подобных фактах рассматривались учеными как проявления суеверий, ведь тогда еще не было известно никаких небесных тел, обломки которых могли бы попадать на Землю. Например, первые астероиды – малые планеты – были открыты только в начале XIX в.

Первая научная работа, утверждавшая космическое происхождение метеоритов, появилась в 1794 г. Ее автор, немецкий физик Эрнст Хладни, сумел дать единое объяснение трем загадочным явлениям: пролетам по небу огненных шаров, падениям на Землю оплавленных кусков железа и камня после пролетов и находкам странных оплавленных железных глыб в разных местах Земли. Согласно Хладни, все это связано с поступлением на Землю космического вещества.

Кстати сказать, одной из таких необычных железных глыб была многопудовая «крица», вывезенная российским академиком Петром Симоном Палласом из Сибири и положившая начало национальной коллекции метеоритов России. Эта железная глыба со включенными в нее зернами минерала оливина получила имя «Палласово железо» и впоследствии дала название целому классу железокаменных метеоритов – палластиты.

Антарктида

Хотя метеориты падают на всем земном шаре, чаще всего они попадают в океаны и погружаются на дно. Но есть на Земле, в восточной Антарктике, огромные бесплодные равнины голубого льда. На этих равнинах время от времени попадаются кусочки скальных пород.

Исследования мест падений метеоритов

Яркий прочерк на небе, зарегистрированный почти в сумерках 13 августа 1999 г., является не вспышкой метеора, а «солнечным зайчиком» от спутника. Этот спутник, Иридиум-52, один из семейчтва спутников цифровой связи Иридиум. «Вспышки» вызываются отражением солнечного света от гладких антенн.

Один из 100000 метеоритов, падающих на Землю, имеет разрушительную силу. За последние 200 лет наблюдений на территории США в жилище попало 23 метеорита, а на территории бывшего СССР 4 метеорита.

1511 г. Генуя (Италия). Во время солнечного затмения произошел метеорный дождь. В результате убито несколько рыбаков и священник. 1684 г. Тобольск (Россия). В результате падения метеорита пробит купол церкви. 1836 г. Бразилия. В результате падения метеорита убита овца. 1911 г. Египет. Упавшим метеоритом убита собака.

12 ноября 1982 г. в г. Везерсфилд (шт. Коннектикут, США) Роберт и Ванда Донахью сидели вечером у телевизора, когда в прихожей раздался удар и послышался звон осыпающейся штукатурки. Пожилые супруги обнаружили в крыше дома и потолке дыру размером в человеческую голову, а на кухне под столом каменный метеорит диаметром 13 см и массой 2,7 кг. приехавшие по вызову ученые не поленились даже заглянуть в пылесос с помощью которого хозяева произвели уборку перед приездом гостей. и обнаружили там несколько осколков метеорита. Метеорит попал в коллекцию и получил названье «Донахью».

9 октября 1992 г. в 8 часов вечера каменный метеорит весом 12,3 кг упал в г. Пикскил (штю Нью-Йорк, США) на багажник стоящего во дворе автомобиля и от удара раскололся на несколько частей сильно помяв багажник. На шум выбежала молодая хозяйка автомобиля. Метеорит был еще теплый. Она сообщила в ближайший университет. Через несколько часов у дома собрались ученые, коллекционеры, сотрудники музея, пресса, представители аукциона Сотби и т.д. Ученые подтвердили, что это каменный метеорит (хондрит) и хозяйка за него получила 70000 $. Так что упавший с неба камень был к счастью.

Кратер Чиксулуб

Большой земной ударный кратер на северном побережье полуострова Юкатан в Мексике, в настоящее время в значительной степени скрытый осадочными породами. Считается, что он связан с произошедшим 65 млн. лет назад ударным событием, которое, по-видимому, явилось причиной массового вымирания живых существ, включая динозавров.

Метеорит Гоба

Самый большой известный метеорит в мире. Его размеры 3х3х1 м. Принадлежит к типу железных метеоритов и весит приблизительно 55000 кг. Он все еще находится на месте падения в Намибии, где был обнаружен в 1928 г. Метеорит покрыт слоем ржавого эродированного вещества; с учетом эрозии первоначальная масса метеорита должна превышать 73000 кг.

Сихотэ-Алинский дождь

Большой метеоритный дождь, выпавший 12 февраля 1947 г. в восточной Сибири. Самый большой найденный метеорит весил 1745 кг, но по имеющимся оценкам, на поверхность Земли упали тысячи осколков, общий вес которых достигает 100 т. Большинство их не найдено.

Самый большой метеорит из находящихся в музеях мира. Этот железный метеорит был найден Робертом Пири в Гренландии в 1897 г. Вес – 31 тонна. Экспонируется в Хейденском планетарии в Нью-Йорке.

Интересные истории

9 октября 1992 г. Америка жила ожиданием Колумбова дня: приближалась 500-я годовщина открытия Нового Света великим мореплавателем. 18-летняя Мишель Напп из маленького городка Пикскилл (штат Нью-Йорк) вечером смотрела телевизор. Вдруг она услышала громкий шум на улице. Девушка испугалась и вызвала по телефону полицию, которая установила, что на этот раз «нарушителем» явился космический странник: рядом с поврежденной машиной Наппов лежал оплавленный камень почти 9 кг.

Этот случай представляет собой скорее исключение, чем правило: падающие с неба камни или куски железа – их называют метеоритами – ведут себя удивительно миролюбиво по отношению к людям. Достоверно зафиксировано только два случая

Городок Пикскилл

Когда Пикскильский метеорит пролетал над США в 1992 году, его успели снять на видео 16 человек, пока он не врезался в машину. Этот эффектный болид пересек воздушное пространство нескольких штатов США за 40 секунд своего полета, пока не приземлился в Пикскиле, пригороде Нью-Йорка.

Самые знаменитые падения метеоритов

Во время работы Колби Наварро за компьютером в крышу дома вломился булыжник из космоса, попал в принтер, ударился в стену и остался лежать возле каталожного ящика. Это произошло около полуночи 26 марта в местечке Форест Парк штата Иллинойс (США) неподалеку от Чикаго.

Метеорит в Чикаго

попадания метеоритов в людей (оба без серьезных последствий), ничтожен и причиненный ими материальный ущерб. Никакой мистики в этом «дружелюбии» нет: падение метеорита – явление редкое и может произойти с равной вероятностью в любой точке земного шара. А люди до сих пор занимают не так уж много места на своей планете. Вот и падают небесные странники в океаны, на которые приходится более 2/3 земной поверхности, в обширные безлюдные пустыни, леса, полярные районы – в полном соответствии с законами математической статистики. Поэтому любой из нас не только практически не рискует получить удар метеорита, но даже имеет очень мало шансов увидеть его падение.

Впрочем, отчаиваться не стоит. Наблюдать прибытие на Землю космического вещества может каждый. Достаточно в ясную ночь провести хотя бы час, всматриваясь в звездное небо, и вы наверняка заметите огненную черту, прорезающую небосвод. Это – падающая «звезда», или метеор. Иногда их бывает много – целые звездные ливни. Но сколько бы их не пролетело, вид звездного неба не изменится: падающие звезды не имеют никакого отношения к звездам настоящим.

В космическом пространстве, окружающем нашу планету, движется множество твердых тел самых разных размеров – от пылинок до глыб с поперечниками в десятки и сотни метров. Чем больше размер тел, тем реже они встречаются. Поэтому пылинки сталкиваются с Землей ежедневно и ежечасно, а глыбы – раз в сотни и даже тысячи лет.

Совершенно различны и сопровождающие эти столкновения эффекты. Маленькое тело массой в доли грамма, вторгаясь в земную атмосферу с огромной скоростью (десятки километров в секунду), раскаляется от трения о воздух и целиком сгорают на высотке 80–100 км. Наблюдатель на Земле видит в этот момент метеор. Если же в атмосферу влетает кусок побольше, например размером с кулак, и притом не с самой большой скоростью, – атмосферу может сработать как тормоз и погасить космическую скорость, прежде чем кусок полностью сгорит. Тогда его остаток упадет на поверхность Земли. Это и есть метеорит. Падение метеорита сопровождается полетом по небу огненного шара и громоподобными звуками. Такие явления мало кому доводилось наблюдать. Наконец, когда масса влетевшего тела еще больше атмосфера уже не может погасить всю его скорость, и оно врезается в поверхность Земли, оставляя на ней космический шрам – метеоритный кратер или воронку.

Если посмотреть в телескоп на Луну, то видно, что вся ее поверхность буквально изрыта такими кратерами – следами метеоритной бомбардировки, которой Луна подвергалась в прошлом. Земля тоже получила в прошлом космические удары (см. статью «Астероидная угроза»). Их следы в виде метеоритных кратеров (иногда их называют астроблемы – «звездные раны») остались на поверхности нашей планеты. Наиболее известный из них – кратер в Аризоне – имеет в поперечнике более 1 км и образовался 50 тыс. лет назад. Сухой климат пустыни обеспечил его хорошую сохранность. Внешние следы других космических шрамов в значительной степени стерты последующими геологическими процессами. Одно из крупнейших известных ныне таких образований находится на севере Сибири. Это Попигайский метеоритный кратер диаметром 100 км.

Как падают метеориты

Метеориты падают внезапно, в любое время и в любом месте земного шара. Их падение всегда сопровождается очень сильными световыми и звуковыми явлениями. По небу в это время в течение нескольких секунд проносится очень крупный и ослепительно яркий болид. Если метеорит падает днем при безоблачном небе и ярком солнечном освещении, то болид не всегда бывает виден. Однако после его полета на небе все же остается похожий на дым клубящийся след, а на месте исчезновения болида появляется темное облачко.

Болид, как мы уже знаем, появляется потому, что в земную атмосферу влетает из межпланетного пространства метеорное тело - камень. Если оно имеет большие размеры и весит сотни килограммов, то не успевает целиком распылиться в атмосфере. Остаток такого тела падает на землю в виде метеорита. Значит, не всегда после полета болида может упасть метеорит. Но, наоборот, падению каждого метеорита всегда предшествует полет болида.

Влетев в земную атмосферу со скоростью 15 - 20 км в сек, метеорное тело уже на высоте 100 - 120 км над Землей встречает очень сильное сопротивление воздуха. Воздух перед метеорным телом мгновенно сжимается и вследствие этого разогревается; образуется так называемая «воздушная подушка». Само тело нагревается с поверхности очень сильно, до температуры в несколько тысяч градусов. В этот момент и становится заметным летящий по небу болид.

Пока болид несется с большой скоростью в атмосфере, вещество на его поверхности расплавляется от высокой температуры, вскипает, превращается в газ и частично разбрызгивается мельчайшими капельками. Метеорное тело непрерывно уменьшается, оно как бы тает.

Из испаряющихся и разбрызгивающихся частиц образуется след, остающийся после полета болида. Но вот тело при своем движении попадает в нижний, более плотный слой атмосферы, где воздух все больше и больше тормозит его движение. Наконец, на высоте около 10-20 км над земной поверхностью тело полностью теряет свою космическую скорость. Оно словно увязает в воздухе. Эта часть пути называется областью задержки. Метеорное тело перестает нагреваться и светиться. Остаток его, не успевший полностью распылиться, падает на Землю под влиянием силы притяжения, как обыкновенный брошенный камень.

Метеориты падают очень часто. Вероятно, каждый день где-нибудь на земном шаре падает несколько метеоритов. Однако большинство их, попадая в моря и океаны, в полярные страны, пустыни и другие малонаселенные места, остаются не разысканными. Только ничтожное число метеоритов, в среднем 4 - 5 в год, становится известным людям. На всем земном шаре до сих порнайдено около 1600 метеоритов: из них 125 были обнаружены в нашей стране.

Почти всегда метеориты, проносясь с космической скоростью в земной атмосфере, не выдерживают того огромного давления, которое оказывает на них воздух, и раскалываются на много кусков. В этих случаях на Землю падает обычно не один, а несколько десятков или даже сотен и тысяч осколков, образующих так называемый метеоритный дождь.

Упавший метеорит бывает только теплым или горячим, но не раскаленным, как думают многие. Это объясняется тем, что метеорит проносится через земную атмосферу в течение всего лишь нескольких секунд. За такое короткое время он не успевает прогреться и внутри остается таким же холодным, каким он был и межпланетном пространстве. Поэтому метеориты при падении на Землю не могут вызвать пожара, даже если они случайно упадут на легко загорающиеся предметы

Метеорит огромных размеров, весящий сотни тысяч тонн, не может затормозиться в воздухе. С большой скоростью, превышающей 4 - 5 км/сек, он ударится о Землю. При ударе метеорит мгновенно нагреется до такой высокой температуры, что иногда может полностью превратиться в раскаленный газ, который с огромной силой устремится во все стороны и произведет взрыв. На месте падения метеорита образуется воронка - так называемый метеоритный кратер, а от метеорита останутся только небольшие осколки, разлетевшиеся вокруг кратера

В разных местах земного шара найдено много метеоритных кратеров. Все они образовались в далеком прошлом при падении гигантских метеоритов. Огромный метеоритный кратер, называемый Аризонским или «Ущельем Дьявола», находится в США. Его поперечник равен 1200 м, а глубина - 170 м. Вокруг кратера удалось собрать много тысяч мелких осколков железного метеорита общим весом около 20 Т. Но, конечно, вес метеорита, упавшего и взорвавшегося здесь, был во много раз больше; по подсчетам ученых, он достигал многих тысяч тонн. Самый большой кратер обнаружен в 1950 г. в Канаде; поперечник его 3600 м, однако для решения вопроса о происхождении этого гигантского кратера требуются еще дальнейшие исследования. Утром 30 июня 1908 г. в глухой сибирской тайге упал гигантский метеорит. Его назвали Тунгусским, так как место падения метеорита находилось недалеко от реки Подкаменной Тунгуски. При падении этого метеорита по всей Центральной Сибири был виден большой ослепительно яркий болид, пролетевший с юго-востока на северо-запад. Через несколько минут после того, как скрылся болид, раздались удары огромной силы, а затем послышался сильный грохот и гул. Во многих селениях в окнах лопнули стекла, с полок попадала посуда. Удары, подобные взрывам, были слышны на расстоянии свыше 1000 км от места падения метеорита.

Изучать этот метеорит ученые начали после Октябрьской революции. Впервые только в 1927 г. на место падения метеорита проник научный сотрудник Академии наук Л. А. Кулик. На плотах по разлившимся весной таежным речкам Кулик в сопровождении проводников-эвенков пробрался в «страну мертвого леса», как эту местность стали называть эвенки после падения метеорита. Здесь на огромной площади, радиусом в 25 - 30 км, Кулик обнаружил поваленный лес. Деревья на всех возвышенных местах лежали с вывороченными корнями, образуя гигантский веер вокруг места падения метеорита. Несколько экспедиций, проведенных Куликом, занимались изучением места падения метеорита. Были произведены аэрофотосъемки центральной части области поваленного леса и раскопки нескольких ям, которые сначала ошибочно приняли за метеоритные воронки. Осколки Тунгусского метеорита найдены не были. Возможно, что при взрыве Тунгусский метеорит целиком превратился в газ и никаких значительных осколков от него не осталось.

Летом 1957 г. российский ученый А. А. Явнель исследовал образцы почвы, доставленные Л. А. Куликом из района падения метеорита еще в 1929 - 1930 гг. В этих образцах почвы были обнаружены мельчайшие частички Тунгусского метеорита.

В тихое морозное утро 12 февраля 1947 г. ослепительно яркий огненный шар - болид - стремительно пронесся на фоне голубого неба над российским Приморьем. Оглушительный грохот раздался после его исчезновения. Распахнулись двери в домах, полетели со звоном осколки оконных стекол, посыпалась с потолков штукатурка, из топившихся печей было выброшено пламя с золой и дровами. Животные метались в паническом страхе. На небе вслед за пролетевшим огненным шаром появился огромный, похожий на дым след в виде широкой полосы. Вскоре след стал изгибаться и, словно сказочный исполинский змей, распростерся по небу. Постепенно слабея и разрываясь на отдельные клочья, след исчез только к вечеру.

Все эти явления были вызваны падением огромного железного метеорита, получившего название Сихотэ-Алинского (он упал в западных отрогах горного хребта Сихотэ-Алинь). В течение четырех лет Комитет по метеоритам Академии наук занимался изучением падения этого метеорита и сбором его частей. Метеорит еще в воздухераскололся на тысячи частей и выпал метеоритным дождем на площади в несколько квадратных километров. Наиболее крупные части - «капли» этого железного дождя - весили по несколько тонн.

На месте падения метеорита было обнаружено 200 метеоритных воронок диаметром от десятков сантиметров до 28 м. Самая крупная воронка имеет глубину в 6 м, в ней мог бы поместиться двухэтажный дом.

Участники экспедиции за все время работ собрали и вывезли из тайги более 7000 метеоритных осколков общим весом около 23 Т. Самые крупные осколки весят 1745, 700, 500, 450 и 350 кг.

Теперь в Комитете по метеоритам ведется тщательная научная обработка всего собранного материала. Производится анализ химического состава метеоритного вещества, изучается его структура, а также обстановка падения метеоритного дождя и условия движения метеорного тела в земной атмосфере

Наблюдения метеоров

Метеоры, или "падающие звезды" - это световые явления в атмосфере Земли, вызываемые вторжением небольших твердых частиц со скоростью от 15 до 80 км/сек.

Масса таких частиц обычно не превышает нескольких граммов, а чаще составляет доли грамма. Нагреваясь от трения о воздух, такие частицы раскаляются, дробятся и распыляются на высоте 50-120 км. Все явление длится от долей до 3-5 секунд.

Яркость и цвет метеора зависят от массы метеорной частицы и от величины скорости относительно Земли. "Встречные" метеоры загораются на большей высоте, они ярче и белее; "догоняющие" метеоры всегда слабее и желтее.

В тех редких случаях, когда частица достаточно велика, наблюдается болид - ярко светящийся шар с длинным следом, днем - темным, ночью - светящимся. Появление часто сопровождается звуковыми явлениями (шум, свист, грохот) и выпадением метеорного тела на Землю.

В настоящее время могут наблюдаться явления связанные с вхождением и сгоранием в атмосфере тел земного происхождения - спутников, ракет и их различных деталей.

При меньшей скорости входа в плотные слои атмосферы (не более 8 км/сек) свечение происходит на меньшей высоте, более продолжительное время и при больших размерах и сложной структуре тела сопровождается распадом на отдельные части. Возникающие при этом световые эффекты весьма разнообразны, и при отсутствии возможности оценить реальные размеры и удаление, а, значит, скорость и направление перемещения предмета, у неподготовленного наблюдателя могут вызвать различные описания и толкования.

Большинство же реально наблюдаемых необыкновенных световых явлений в атмосфере после внимательного анализа объясняются именно деятельностью связанной с космическими запусками. Для квалифицированного описания наблюдаемого явления следует запомнить основные пункты, на которые следует обратить внимание, чтобы составить "словесный портрет" происходящего. Все оценки надо делать словами произнесенными вслух. Слова, высказанные в краткий миг происходящего лучше запоминаются и впоследствии меньше возникает сомнений в оценке и реальности существования того или иного факта

Общий вид и размеры метеоритов

На протяжении суток можно зарегистрировать около 28 000 метеоритов, видимая величина которых равна -3. Масса метеорного тела, вызывающего такое явление, составляет всего 4.6 грамма.

Кроме единичных (спорадических) метеоров несколько раз в год можно наблюдать целые метеорные потоки (метеорные дожди). И если обычно за один час наблюдатель регистрирует 5-15 метеоритов, то во время метеорного дождя - сто, тысячу и даже до 10 000. Это означает, что в межпланетном пространстве движутся целые рои метеорных частиц. Метеорные потоки на протяжении нескольких ночей появляются примерно в одной и той же области неба. Если их следы продолжить назад, то они пересекутся в одной точке, которая называется радиантом метеорного потока.

Крупнейший из известных метеоритов находится на месте падения в пустыне Адрар (Западная Африка), его вес оценивается в 100 000 тонн. Второй по величине железный метеорит Гоба весом 60 тонн находится в Юго-Западной Африке, третий, весом 50 тонн, хранится в Нью-йоркском музее естественной истории.

Если в атмосферу Земли влетает метеорное тело, вес которого превышает 1 000 000 тонн, то оно углубляется в грунт на 4-5 своих диаметров, вся его огромная кинетическая энергия превращается в тепло. Возникает сильнейший взрыв, при котором метеорное тело в значительной степени испаряется. На месте взрыва образуется воронка - кратер.

Одним из наиболее эффектных является кратер в штате Аризона (США). Его диаметр составляет 1200 м, а глубина - 175 м; вал кратера поднят над окружающей пустыней на высоту около 37 метров. Возраст этого кратера - около 5000 лет

Главный признак метеоритов - это так называемая кора плавления. Она имеет толщину не более 1 мм и со всех сторон покрывает метеорит в виде тонкой скорлупы. Особенно хорошо заметна кора черного цвета на каменных метеоритах.

Вторым признаком метеоритов являются характерные ямки на их поверхности. Обычно метеориты имеют форму обломков. Но иногда бывают метеориты замечательной конусообразной формы. Они напоминают головку снаряда. Такая конусообразная форма образуется в результате «обтачивающего» действия воздуха.

Самый крупный цельный метеорит был найден в Африке в 1920 г. Метеорит этот железный и весит около 60 Т. Обычно же метеориты весят по несколько килограммов. Метеориты весом в десятки, а тем более в сотни килограммов падают очень редко. Самые маленькие метеориты весят доли грамма. Например, на месте падения Сихотэ-Алинского метеорита был найден самый маленький экземпляр в виде крупинки весом всего лишь в 0,18 Г, поперечник этого метеорита равен только 4 мм.

Чаще всего падают каменные метеориты: в среднем из 16 упавших метеоритов только один оказывается железным

Из чего состоят метеориты

В отдельных случаях крупное метеорное тело при своем движении в атмосфере не успевает испариться и достигает поверхности Земли. Этот остаток метеорного тела называется метеоритом. На протяжении года на Землю выпадает примерно 2000 метеоритов.

В зависимости от химического состава метеориты подразделяются на каменные хондриты (их относительное количество 85.7%), каменные ахондриты (7.1%), железные (5.7%) и железо-каменные метеориты (1.5%). Хондрами называют мелкие круглые частицы серого цвета, часто с коричневым оттенком, обильно вкрапленные в каменную массу.

Железные метеориты практически полностью состоят из никелистого железа. Из расчетов следует, что наблюдаемая структура железных метеоритов образуется в случае, если в интервале температур примерно от 600 до 400 С вещество охлаждается со скоростью 1° - 10° С за миллион лет.

Каменные метеориты, в которых нет хондр, называются ахондритами. Анализ показал, что в хондрах содержатся практически все химические элементы.

Чаще всего в метеоритах находятся следующие восемь химических элементов: железо, никель, сера, магний, кремний, алюминий, кальций и кислород. Все остальные химические элементы таблицы Менделеева находятся в метеоритах в ничтожных, микроскопических количествах. Соединяясь между собой химически, эти элементы образуют различные минералы. Большинство этих минералов найдено в земных горных породах. И совсем в ничтожных количествах в метеоритах обнаружены такие минералы, которых нет и не может быть на Земле, так как она имеет атмосферу с большим содержанием кислорода. Вступая в соединение с кислородом, эти минералы образуют уже другие вещества. Железные метеориты почти целиком состоят из железа в соединении с никелем, а каменные метеориты - главным образом из минералов, называемых силикатами. Они состоят из соединений магния, алюминия, кальция, кремния и кислорода.

Особенно интересно внутреннее строение железных метеоритов. Их отполированные поверхности становятся блестящими как зеркало. Если протравить такую поверхность слабым раствором кислоты, то обычно на ней появляется замысловатый рисунок, состоящий из переплетающихся между собой отдельных полосок и узких каемок. На поверхностях некоторых метеоритов после травления появляются параллельные тонкие линии. Все это результат внутреннего кристаллического строения железных метеоритов. Не менее интересна структура каменных метеоритов. Если посмотреть на излом каменного метеорита, то часто даже невооруженным глазом можно заметить маленькие округлые шарики, рассеянные по поверхности излома. Эти шарики иногда достигают размера горошины. Кроме них, в изломе видны рассеянные мельчайшие блестящие частички белого цвета. Это - включения никелистого железа. Среди таких частичек встречаются золотистые блестки - включения минерала, состоящего из железа в соединении с серой. Бывают метеориты, которые представляют собой как бы железную губку, в пустотах которой заключены зерна желтовато-зеленого цвета минерала оливина

Происхождение метеоритов

В настоящее время во многих музеях мира хранится не менее 500 тонн метеоритного вещества. Расчет показывает, что в виде метеоритов и метеорной пыли за сутки на Землю выпадает около 10 тонн вещества, что за время 2 млрд. лет дает слой толщиной 10 см.

Источником практически всех малых метеорных частиц являются, по-видимому, кометы. Крупные метеорные тела имеют астероидное происхождение.

Российкие ученые - академик В. Г. Фесенков, С. В. Орлов и другие считают, что meteoritы и метеориты тесно связаны между собой. Астероиды - это гигантские метеориты, а метеориты - это совсем маленькие, карликовые meteoritы. Те и другие являются осколками планет, которые миллиарды лет назад двигались вокруг Солнца между орбитами Марса и Юпитера. Эти планеты в результате, по-видимому, столкновения распались на части. Образовалось бесчисленное множество осколков самых различных размеров, вплоть до мельчайших крупинок. Эти осколки носятся теперь в межпланетном пространстве и, сталкиваясь с Землей, падают на нее в виде метеоритов

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.astrolab.ru/

Кратковременные вспышки, возникающие в земной атмосфере при вторжении в нее быстро движущихся мельчайших твердых частиц, получили название метеоров (иногда метеоры неправильно называют «падающими звездами»). Сравнительно крупные частицы могут вызвать очень яркую вспышку. Вспышки, блеск которых превышает звездную величину - 5* (это больше максимального блеска Венеры), называют болидами. В межпланетном пространстве вокруг Солнца движется множество частиц различных размеров-так называемых метеорных тел. Попадая а атмосферу Земли, метеорные тела вследствие трения могут полностью сгореть или разрушиться. Однако наиболее крупные из них сгорают не до конца, и их остатки могут упасть на поверхность Земли. Их называют метеоритами. Падение метеорита сопровождается ярким огненным следом.

Поиск метеоритов на поверхности Земли-задача исключительной научной важности, поскольку это единственные небесные тела, которые можно подробно изучать в лабораториях, исключая, конечно, те небольшие образцы лунного грунта, которые были доставлены на Землю астронавтами и автоматическими аппаратами. Даже если ваши ((астрономические интересы» не связаны с изучением метеоров, вы тем не менее должны представлять, какую информацию можег принести наблюдение этих явлений.

Наблюдение метеоров

Метеоры можно увидеть в любую ясную ночь, а при благоприятных атмосферных условиях даже невооруженным глазом можно заметить 5-10 метеоров в час. Это так называемые спорадические метеоры, связанные с вторжением в земную атмосферу отдельных частиц. Поскольку эти частицы обращаются вокруг Солнца по произвольным орбитам, они могут случайно возникнуть на небе в самых неожиданных местах. Помимо отдельных частиц вокруг Солнца движутся целые их рои. Многие из них порождены распадающимися или распавшимися кометами. Каждый метеорный рой обращается вокруг Солнца с постоянным периодом и многие из них в определенные периоды юда встречаются с Землей. В такие периоды число метеоров значительно возрастает, и тогда говорят о метеорных потоках. Как в космическом пространстве, так и вторгаясь в земную атмосферу, частицы метеорного потока движутся примерно параллельно, но вследствие перспективы создается впечатление, что они вылетают из ограниченной области неба, которую называют радиантом. Метеорные потоки обычно именуют по созвездиям, в которых лежат соответствующие им радианты. Данные о некоторых наиболее известных метеорных потоках приведены в таблице. Иногда метеорные потоки называют по вмени той кометы, с которой они связаны. Так, метеорный поток Бюлиды (или Андромениды) получил свое название от распавшейся кометы Бизлы, а Якобиниды (или Дракониды) - от комет Якобини Циннера.

Активность метеорного потока характеризуют числом метеоров, наблюдаемых за час. Числа, приведенные в таблице, характеризуют активность потока, которую опытный наблюдатель может зарегистрировать при благоприятных условиях в направлении зенита. Совершенно очевидно, что наблюдаемое число метеоров зависит от общих условия видимости, к тому же из-за поглощения света в] атмосфере метеоры, вспыхивающие ближе к горизонту, кажутся слабее. Серьезную помеху при наблюдении метеоров создает лунный ] свет, особенно в периоды за 5-6 дней до и яосле новолуния; по этой причине в отдельные годы вообще не удается наблюдать некоторые метеорные потоки. Кроме того, интенсивность метеорного потока: меняется год от года, и в зависимости от характера распределения метеорных частиц в рое эти изменения могут быть значительными. Компактный метеорный рой может порождать метеорные, или звездные, дожди. Примером может служить метеорный поток Леониды, который вызывал звездные дожди большой интенсивности в 1799, 1833 и 1866 гг. (а возможно, и в более ранние исторические эпохи); но он практический исчез в 1899 и 1932 гг. Предполагается, что его исчезновение связано с гравитационным влиянием Юпитера и Сатурна на орбиту этого роя. Однако в 1966 г. интенсивность потока оказалась столь высокой, что за 20 мин удалось наблюдать около 150 тыс. метеоров. Это был поистине невероятный метеорный дождь. Например, такие известные метеорные потоки, как Квадрантиды, Персеиды и Гемениды, порождают не более 50 метеоров в час. Число метеоров также меняется в течение ночи. Перед полуночью наблюдаются только те метеоры, которые создаются частицами, «догоняющими» Землю, и поэтому скорость их вхождения в атмосферу мала. После полуночи частицы и Земля движутся навстречу друг другу, и поэтому их относительная скорость равна сумме скоростей. Поскольку яркость метеора существенно зависит от скорости входа метеорной частицы в атмосферу (чем она больше, тем метеор ярче и лучше видим), наблюдаемое число метеоров возрастает после полуночи.

Визуальные наблюдения

Визуальные наблюдения метеоров лучше проводить группой. В этол случае каждый наблюдатель следит за своим участком неба, а кто-п один контролирует время и записывает результаты наблюдений Однако и одному человеку по силам провести достаточно интересны! и ценные наблюдения. Так как метеоры возникают неожиданно, чсре: произвольные интервалы времени, необходимо подготовиться к цикл наблюдений продолжительностью 30 мин каждое. После каждого 30-ти минутного периода наблюдений нужно сделать небольшой перерыв. Сидя (или лежа) неподвижно В течение даже 30 мин, вы быстро замерзнете, поэтому старайтесь одеваться теплее. Не забывайте отмечать точное время начала и конца наблюдений.

Для наблюдений лучше выбрать участок неба, удаленный на 45° от радианта и находящийся как можно выше над горизонтом. Один человек не в состоянии охватить наблюдениями все небо, поэтому сосредоточьте все внимание только на выбранном вами участке. Заранее заготовьте несколько звездных карт и оберните их в прозрачный полиэтилен (в конечном счете вам потребуется только одна парта того участка неба, который вы выбрали для наблюдений). До и после каждого периода непрерывных наблюдений оцените звездную величину самой яркой звезды наблюдаемого участка неба. Это позволит судить об условиях наблюдений и при необходимости внести поправки в оценку скорости падения метеоров.

В идеале следует отмечать следующие данные по каждому метеору: время появления, длина пути, тип, яркость и различные особенности. При наблюдениях очень интенсивных метеорных потоков получение подробной информации по каждому метеору нереально. Наибольший интерес представляет информация, касающаяся последних трех из перечисленных пунктов. Далее мы обсудим их более подробно.

Длина пути. Отмстить путь метеора не составляет особого труда. Увидев метеор, натяните вдоль его траектории кусок веревки или, еще лучше, «отметьте» его прямой палкой, это поможет вам определить путь метеора среди звезд. Оцените местоположение начала и конца пути и, по возможности, заметьте положение хотя бы одной точки в середине траектории. Например: траектория началась в точке, лежащей на одной трети расстояния между звездами у и а Льва, прошла вблизи Шьва и закончилась на половине расстояния между S и у Девы. Зарисуйте траекторию метеора на звездной карте. Здесь могут возникнуть трудности, поскольку траектория метеора получается прямой только на звездных картах, сделанных в специальной проекции. Такие карты нелегко достать и ими трудно пользоваться, так как изображение звездного неба на них сильно искажено. На других картах траектории метеоров криволинейны, но, несмотря на это, если аккуратно и точно нанести положение начальной и конечной точек траектории, то при необходимости можно рассчитать всю траекторию и орбиту метеора. При наблюдениях метеорного дождя достаточно отметить только созвездие, через которое прошел метеор.

Тип метеора. Каким образом установить, относится ли данный метеор к спорадическим или он связан с тем или иным метеорным потоком. Это можно сделать, проследив мысленно (или продлив ваправление указательной палки) след метеора «назад", посмотрев, проходит ли он через радиант какого-нибудь активного в данную ночь метеорного потока. Если продолжение следа метеора проходит в пределах 4° от радианта, то можно с уверенностью говорить о принадлежности метеора к данному потоку. Отметьте положение радианта на своей звездной карте. (Нужно помнить, что при движении Земли через поток метеорных частиц радиант медленно перемещается среди звезд. Данные о суточном перемещении радианта можно найти в соответствующих астрономических календарях.) Яркость метеоров. По яркости метеора можно судить о размерах и скорости движения метеорной частицы. В отличие от оценки блеска переменных звезд точность опенки блеска метеоров невелика. Так, неопределенность в 0,5 звездной величины здесь можно считать вполне приемлемой. Такой точности не трулно добиться, научившись быстро сравнивать по яркости метеор и звезды в наблюдаемой области неба; достаточно отметить, что блеск метеора лежит где-то в пределах между значениями блеска двух звезд сравнения. Непытайтесь запоминать численные значения звездных величин многих звезд-проще запомнить их названия (или отметить их на звездной карте), а их звездные величины лучше посмотреть уже после на-] блюдсний. Звезды сравнения старайтесь выбирать поблизости от] метеорного следа, чтобы поглощение света одинаково сказывалось как на метеоре, так и на звездах сравнения. Определенные трудности могут возникнуть при оценке блеска ярких метеоров, гак как в наблюдаемой области, возможно, не окажется достаточно ярки звезд. В этом случае можно порекомендовать зрительно представить яркость Сириуса (его блеск равен -1,4") или мысленно сравнить яркость метеора с яркостью Юпитера или Венеры (соответственные звездные величины -2,4" и -4,3™).

Особые детали. Некоторые метеоры оставляют за собой устойчивый яркий след, который сохраняется долгие секунды. При наблюдениях таких метеоров необходимо отмечать длительность существования следа, изменения в его форме и положении. Поскольку метеоры с устойчивыми следами довольно редкое явление, любые ю наблюдения представляют значительный интерес. У ярких метеоров иногда удается отметить цвет и характер вспышки в конце его траектории.

Телескопические наблюдения

Наблюдения метеоров можно проводить с помощью телескопов и биноклей, но при этом требуется недюжинное терпение, так как область наблюдений ограничена небольшим полем зрения телескопа. Такие наблюдения позволяют увидеть очень слабые метеоры, что дает информацию о метеорных частицах очень малых размеров. Следует иметь в виду, что метеоры могут случайно попасть в поле зрения вашего телескопа при наблюдениях других небесных объектов-переменных звезд, галактик и т.д. В любом случае попытайтесь записать более подробные данные о направлении движения метеора, его блеске, цвете и скорости, при возможности сделайте быстрый набросок поля зрения телескопа и следа метеора.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.astro-azbuka.info

Тема: «Метеориты»

Выполнил:

Кириченко Александр

Учитель: Пугатов Виталий Геннадьевич

ст. Ясенская

ПЛАН:

1. Введение.

2. Метеоритное вещество и метеориты.

3. Начало метеоритных исследований.

4. Физические явления, вызванные полетом метеороида в атмосфере.

5. Некоторые виды метеоритов.

6. Тунгусский метеорит:

I. Немного истории.

II. Что сегодня известно.

III. Гипотезы, версии, предположения.

7. Заключение.

1. Введение.

Известно, что тайны нужны, более того, необходимы науки, потому что именно нерешённые загадки заставляют людей искать, познавать непознанное, открывать то, что не удалось открыть предыдущим поколениям учёных.

Путь к научной истине начинается со сбора фактов, их систематизации, обобщения, осмысления. Факты и только факты являются фундаментом любой рабочей гипотезы, рождающейся в результате кропотливого труда исследования.

Ежегодно на Землю выпадает не менее 1000 метеоритов. Однако многие из них, падая в моря и океаны, в малонаселённые места, остаются необнаруженными. Только 12-15 метеоритов в год на всём земном шаре поступают в музеи и научные учреждения.

Происхождение метеоритов, наиболее распространена точка зрения, согласно которой метеориты представляют собой обломки малых планет. Огромное количество мелких малых планет, диаметром много меньше километра, составляют группу, переходную от малых планет к метеоритным телам. Вследствие соударений, происходящим между мелкими малыми планетами при их движении, идёт непрерывный процесс их дробления на всё более мелкие частицы, пополняющие состав метеоритных тел в межпланетном пространстве.

Метеориты получают названия по наименованиям населённых пунктов или географическими объектами, ближайших к месту их падения. Многие метеориты обнаруживаются случайно и обозначаются термином «находка», в отличие от метеоритов, наблюдавшихся при падении и называемых «падениями». Одним из которых является Тунгусский метеорит, взорвавшийся в районе реки Подкаменная Тунгуска.

2. Метеоритное вещество и метеориты.

Каменные и железные тела, упавшие на Землю из межпланетного пространства, называются метеоритами, а наука, их изучающая-метеоритикой. В околоземном космическом пространстве движутся самые различные метеороиды (космические осколки больших астероидов и комет). Их скорости лежат в диапазоне от 11 до 72 км/с. Часто бывает так, что пути их движения пересекаются с орбитой Земли и они залетают в её атмосферу.

Явления вторжения космических тел в атмосферу имеют три основные стадии:

1. Полёт в разреженной атмосфере (до высот около 80 км), где взаимодействие молекул воздуха носит корпускулярный характер. Частицы воздуха соударяются с телом, прилипают к нему или отражаются и передают ему часть своей энергии. Тело нагревается от непрерывной бомбардировки молекулами воздуха, но не испытывает заметного сопротивления, и его скорость остаётся почти неизменной. На этой стадии, однако, внешняя часть космического тела нагревается до тысячи градусов и выше. Здесь характерным параметром задачи является отношение длины свободного пробега к размеру тела L, которое называется числом Кнудсена Kn. В аэродинамике принято учитывать молекулярный подход к сопротивлению воздуха при Kn >0.1.

2. Полёт в атмосфере в режиме непрерывного обтекания тела потоком воздуха, то есть когда воздух считается сплошной средой и атомно-молекулярный характер его состава явно не учитывается. На этой стадии перед телом возникает головная ударная волна, за которой резко повышается давление и температура. Само тело нагревается за счет конвективной теплопередачи, а так же за счет радиационного нагрева. Температура может достигать несколько десятков тысяч градусов, а давление до сотен атмосфер. При резком торможении появляются значительные перегрузки. Возникают деформации тел, оплавление и испарение их поверхностей, унос массы набегающим воздушным потоком (абляция).

3. При приближении к поверхности Земли плотность воздуха растёт, сопротивление тела увеличивается, и оно либо практически останавливается на какой-либо высоте, либо продолжает путь до прямого столкновения с Землёй. При этом часто крупные тела разделяются на несколько частей, каждая из которых падает отдельно на Землю. При сильном торможении космической массы над Землёй сопровождающие его ударные волны продолжают своё движение к поверхности Земли, отражаются от неё и производят возмущения нижних слоёв атмосферы, а так же земной поверхности.

Процесс падения каждого метеороида индивидуален. Нет возможности в кратком рассказе описать все возможные особенности этого процесса.

3. Начало метеоритных исследований.

Как справедливо писал в 1819 г. известный химик Петербургской Академии наук Иван Мухин, «начало преданий о ниспадающих из воздуха камнях и железных глыбах теряется в глубочайшем мраке веков протекших».

Метеориты известны человеку уже многие тысячи лет. Обнаружены орудия первобытных людей, сделанные из метеоритного железа. Случайно находя метеориты, люди едва ли догадывались об их особом происхождении. Исключение составляли находки «небесных камней» сразу после грандиозного зрелища их падения. Тогда метеориты становились предметами религиозного поклонения. О них слагали легенды, их описывали в летописях, боялись и даже приковывали цепями, чтобы они снова не улетели на небо.

Сохранились сведения, что Анаксагор (см., например, книгу И.Д. Рожанского «Анаксагор», с. 93-94) считал метеориты обломками Земли или твердых небесных тел, а другие древнегреческие мыслители - обломками небесной тверди. Эти, в принципе, правильные представления продержались до тех пор, пока люди еще верили в существование небесной тверди или твердых небесных тел. Затем на длинное время их сменили совершенно другие идеи, объяснявшие происхождение метеоритов любыми причинами, но только не небесными.

Основы научной метеоритики заложил Эрнст Хладни (1756-1827), уже достаточно известный к тому времени немецкий физик-акустик. По совету своего друга, физика Г.Х. Лихтенберга, он занялся сбором и изучением описаний болидов и сравнением этой информации с той, что была известна о найденных камнях. В результате этой работы Хладни в 1794 г. издал книгу «О происхождении найденной Палласом и других подобных ей железных масс и о некоторых связанных с этим явлениях природы». В ней, в частности, обсуждался загадочный образчик «самородного железа», обнаруженный в 1772 г. экспедицией академика Петра Палласа и впоследствии доставленный в Петербург из Сибири. Как оказалось, эта масса была найдена еще в 1749 г. местным кузнецом Яковом Медведевым и первоначально весила около 42 пудов (около 700 кг). Анализ показал, что она состоит из смеси железа с каменистыми включениями и представляет собой редкий тип метеорита. В честь Палласа метеориты этого типа были названы палласитами. В книге Хладни убедительно доказано, что Палласово железо и многие другие «упавшие с неба» камни имеют космическое происхождение.

Метеориты делят на «упавшие» и «найденные». Если кто-то видел, как метеорит падал сквозь атмосферу и затем его действительно обнаружили на земле (событие редкое), то такой метеорит называют «упавшим». Если же он был найден случайно и опознан как «космический пришелец» (что типично для железных метеоритов), то его называют «найденным». Метеоритам дают имена по названиям мест, где их нашли.

3. Случаи падения метеоритов на территории России

Старейшая запись о падении метеорита на территории России обнаружена в Лаврентьевской летописи 1091 г., но она не очень подробна. Зато в XX веке в России произошел ряд крупных метеоритных событий. В первую очередь (не только хронологически, но и по масштабу явления) это падение Тунгусского метеорита, случившееся 30 июня 1908 г. (по новому стилю) в районе реки Подкаменная Тунгусска. Столкновение этого тела с Землей привело к сильнейшему взрыву в атмосфере на высоте около 8 км. Его энергия (~1016 Дж) была эквивалентна взрыву 1000 атомных бомб, подобным сброшенной на Хиросиму в 1945 г. Возникшая при этом ударная волна несколько раз обошла земной шар, а в районе взрыва повалила деревья в радиусе до 40 км от эпицентра и привела к гибели большого количества оленей. К счастью, это грандиозное явление произошло в безлюдном районе Сибири и почти никто из людей не пострадал.

К сожалению, из-за войн и революций исследование района Тунгусского взрыва началось только через 20 лет. К удивлению ученых, они не обнаружили в эпицентре никаких, даже самых незначительных обломков упавшего тела. После многократных и тщательных исследований Тунгусского события большинство специалистов считает, что оно было связано с падением на Землю ядра небольшой кометы.

Дождь каменных метеоритов выпал 6 декабря 1922 г. близ села Царев (ныне Волгоградской области). Но его следы были обнаружены только летом 1979 г. Собрано 80 осколков общим весом 1,6 тонны на площади около 15 кв. км. Вес крупнейшего фрагмента составил 284 кг. Это наибольший по массе каменный метеорит, найденный в России, и третий в мире.

К числу самых крупных, наблюдавшихся при падении метеоритов, относится Сихоте-Алиньский. Он упал 12 февраля 1947 г. на Дальнем Востоке в окрестностях хребта Сихоте-Алинь. Вызванный им ослепительный болид наблюдали в дневное время (около 11 ч утра) в Хабаровске и других местах в радиусе 400 км. После исчезновения болида раздавались грохот и гул, происходили сотрясения воздуха, а оставшийся пылевой след медленно рассеивался около двух часов. Место падения метеорита быстро обнаружили по сведениям о наблюдении болида из разных пунктов. Туда немедленно отправилась экспедиция Академии наук СССР под руководством акад. В.Г. Фесенкова и Е.Л. Кринова - известных исследователей метеоритов и малых тел Солнечной системы. Следы падения были хорошо видны на фоне снежного покрова: 24 кратера диаметром от 9 до 27 м и множество мелких воронок. Оказалось, что метеорит еще в воздухе распался и выпал в виде «железного дождя» на площади около 3 кв. км. Все найденные 3500 обломков состояли из железа с небольшими включениями силикатов. Крупнейший фрагмент метеорита имеет массу 1745 кг, а общая масса всего найденного вещества составила 27 т. По расчетам начальная масса метеороида была близка к 70 тоннам, а размер - около 2,5 м. По счастливой случайности этот метеорит также упал в ненаселенном районе, и никто не пострадал.

И наконец, о последних событиях. Одно из них также произошло на территории России, в Башкирии, близ г. Стерлитамак. Очень яркий болид наблюдали 17 мая 1990 г. в 23 ч 20 мин. Очевидцы сообщили, что на несколько секунд стало светло, как днем, раздались гром, треск и шум, от которых зазвенели оконные стекла. Сразу после этого на загородном поле обнаружили кратер диаметром 10 м и глубиной 5 м, но нашли только два относительно небольших фрагмента железного метеорита (весом 6 и 3 кг) и много мелких. К сожалению, при разработке этого кратера с помощью экскаватора был пропущен более крупный фрагмент этого метеорита. И только год спустя дети обнаружили в отвалах грунта, извлеченного экскаватором из кратера, основную часть метеорита весом 315 кг.

20 июня 1998 г., около 17 часов в Туркмении, близ города Куня-Ургенч днем при ясной погоде упал хондритовый метеорит. Перед этим наблюдался очень яркий болид, причем на высоте 10-15 км произошла вспышка, сравнимая по яркости с Солнцем, раздался звук взрыва, грохот и треск, которые были слышны на расстояние до 100 км. Основная часть метеорита весом 820 кг упала на хлопковое поле всего в нескольких десятках метров от работавших на нем людей, образовав воронку диаметром 5 м и глубиной 3,5 м.

4. Физические явления, вызванные полетом метеороида в атмосфере

Скорость тела, падающего на Землю издалека, вблизи ее поверхности всегда превышает вторую космическую скорость (11,2 км/с). Но она может быть и значительно больше. Скорость движения Земли по орбите составляет 30 км/с. Пересекая орбиту Земли, объекты Солнечной системы могут иметь скорость до 42 км/с (= 21/2 х 30 км/с).

Поэтому на встречных траекториях метеороид может столкнуться с Землей со скоростью до 72 км/с.

При входе метеороида в земную атмосферу происходит много интересных явлений, о которых мы только упомянем. Вначале тело вступает во взаимодействие с очень разреженной верхней атмосферой, где расстояния между молекулами газа больше размера метеороида. Если тело массивное, то это никак не влияет на его состояние и движение. Но если масса тела ненамного превышает массу молекулы, то оно может полностью затормозиться уже в верхних слоях атмосферы и будет медленно оседать к земной поверхности под действием силы тяжести. Оказывается, таким путем, то есть в виде пыли, на Землю попадает основная доля твердого космического вещества. Подсчитано, что ежедневно на Землю поступает порядка 100 т внеземного вещества, но только 1% этой массы представлен крупными телами, имеющими возможность долететь до поверхности.

Заметное торможение крупных объектов начинается в плотных слоях атмосферы, на высотах менее 100 км. Движение твердого тела в газовой среде характеризуется числом Маха (М) - отношением скорости тела к скорости звука в газе. Число М для метеороида меняется с высотой, но обычно не превосходит М = 50. Перед метеороидом образуется ударная волна в виде сильно сжатого и разогретого атмосферного газа. Взаимодействуя с ней, поверхность тела нагревается до плавления и даже испарения. Набегающие газовые струи разбрызгивают и уносят с поверхности расплавленный, а иногда и твердый раздробленный материал. Этот процесс называют абляцией .

Раскаленные газы за фронтом ударной волны, а также капельки и частички вещества, уносимые с поверхности тела, светятся и создают явление метеора или болида. При большой массе тела явление болида сопровождается не только ярким свечением, но порой и звуковыми эффектами: громким хлопком, как от сверхзвукового самолета, раскатами грома, шипением, и т. п. Если масса тела не слишком велика, а его скорость находится в диапазоне от 11 км/с до 22 км/с (это возможно на «догоняющих» Землю траекториях), то оно успевает затормозиться в атмосфере. После этого метеороид движется с такой скоростью, при которой абляция уже не эффективна, и он может в неизменном виде долететь до земной поверхности. Торможение в атмосфере может полностью погасить горизонтальную скорость метеороида, и дальнейшее его падение будет происходить почти вертикально со скоростью 50-150 м/с, при которой сила тяжести сравнивается с сопротивлением воздуха. С такими скоростями на Землю упало большинство метеоритов.

При очень большой массе (более 100 т) метеороид не успевает ни сгореть, ни сильно затормозиться; он ударяется о поверхность с космической скоростью. Происходит взрыв, вызванный переходом большой кинетической энергии тела в тепловую, и на земной поверхности образуется взрывной кратер. В результате значительная часть метеорита и окружающие породы плавятся и испаряются.

Нередко наблюдается выпадение метеоритных дождей . Они образуются из фрагментов разрушающихся при падении метеороидов. Примером может служить Сихоте-Алиньский метеоритный дождь. Как показывают расчеты, при снижении твердого тела в плотных слоях земной атмосферы на него действуют огромные аэродинамические нагрузки. Например, для тела, движущегося со скоростью 20 км/с разность давлений на его фронтальную и тыльную поверхности меняется от 100 атм. на высоте 30 км до 1000 атм. на высоте 15 км. Такие нагрузки способны разрушить абсолютное большинство падающих тел. Только наиболее прочные монолитные металлические или каменные метеориты способны их выдержать и долететь до земной поверхности.

Уже несколько десятилетий существуют так называемые болидные сети - системы наблюдательных пунктов, оборудованных специальными фотокамерами для регистрации метеоров и болидов. По этим снимкам оперативно вычисляются координаты возможного места падения метеоритов и проводится их поиск. Такие сети были созданы в США, Канаде, Европе и СССР и охватывают территории примерно по 106 кв. км.

5. Некоторые виды метеоритов

Железные и железо-каменные метеориты:

Железные метеориты раньше считали частью разрушенного ядра одного большого родительского тела размером с Луну или больше. Но теперь известно, что они представляют множество химических групп, которые в большинстве случаев свидетельствуют в пользу кристаллизации вещества этих метеоритов в ядрах разных родительских тел астероидных размеров (порядка нескольких сотен километров). Другие же из этих метеоритов, возможно, представляют собой образцы отдельных сгустков металла, который был рассеян в родительских телах. Есть и такие, которые несут доказательства неполного разделения металла и силикатов, как железо-каменные метеориты.

Железо-каменные метеориты:

Железо-каменные метеориты делят на два типа, различающиеся химическими и структурными свойствами: паласиты и мезосидериты. Палласитами называют те метеориты, силикаты которых состоят из кристаллов магнезиального оливина или их обломков, заключенных в сплошной матрице из никелистого железа. Мезосидеритами называют железо-каменные метеориты, силикаты которых представляют собой в основном пере кристаллизованные смеси из разных силикатов, входящие также в ячейки металла.

Железные метеориты

Железные метеориты почти целиком состоят из никелистого железа и содержат небольшие количества минералов в виде включений. Никелистое железо (FeNi) - это твердый раствор никеля в железе. При высоком содержании никеля (30-50%) никелистое железо находится в основном в форме тэнита (g -фаза) - минерала с гранецентрированной ячейкой кристаллической решетки, при низком (6-7%) содержании никеля в метеорите никелистое железо состоит почти из камасита (a -фаза) - минерала с объемно-центрированной ячейкой решетки.

Большинство железных метеоритов имеет удивительную структуру: они состоят из четырех систем параллельных камаситовых пластин (по-разному ориентированных) с прослойками, состоящими из тэнита, на фоне из тонкозернистой смеси камасита и тэнита. Толщина пластин камасита может быть разной - от долей миллиметра до сантиметра, но для каждого метеорита характерна своя толщина пластин.

Если полированную поверхность распила железного метеорита протравить раствором кислоты, то проявится его характерная внутренняя структура в виде «видманштеттеновых фигур». Названы они в честь А. де Видманштеттена, наблюдавшего их первым в 1808 г. Такие фигуры обнаруживаются только в метеоритах и связаны с необычайно медленным (в течение миллионов лет) процессом остывания никелистого железа и фазовыми превращениями в его монокристаллах.

До начала 1950-х гг. железные метеориты классифицировали исключительно по их структуре. Метеориты, имеющие видманштеттеновы фигуры, стали называть октаэдритами, поскольку составляющие эти фигуры камаситовые пластины располагаются в плоскостях, образующих октаэдр.

В зависимости от толщины L камаситовых пластинок (которая связана с общим содержанием никеля) октаэдриты делят на следующие структурные подгруппы: весьма грубоструктурные (L > 3,3 мм), грубоструктурные (1,3 < L < 3,3), среднеструкткрные (0,5 < L < 1,3), тонкоструктурные (0,2 < L < 0,5), весьма тонкоструктурные (L < 0,2), плесситовые (L < 0,2).

У некоторых железных метеоритов, имеющих низкое содержание никеля (6-8%), видманштеттеновы фигуры не проявляются. Такие метеориты состоят как бы из одного монокристалла камасита. Называют их гексаэдритами, так как они обладают в основном кубической кристаллической решеткой. Иногда встречаются метеориты со структурой промежуточного типа, которые называются гексаоктаэдритами. Существуют также железные метеориты, вообще не имеющие упорядоченной структуры - атакситы (в переводе «лишенные порядка»), в которых содержание никеля может меняться в широких пределах: от 6 до 60%.

Накопление данных о содержании сидерофильных элементов в железных метеоритах позволило создать также их химическую классификацию. Если в n -мерном пространстве, осями которого служат содержания разных сидерофильных элементов (Ga, Ge, Ir, Os, Pd и др.), точками отметить положения разных железных метеоритов, то сгущения этих точек (кластеры) будут соответствовать таким химическим группам. Среди почти 500 известных сейчас железных метеоритов по содержанию Ni, Ga, Ge и Ir четко выделяются 16 химических групп (IA, IB, IC, IIA, IIB, IIC, IID, IIE, IIIA, IIIB, IIIC, IIID, IIIE, IIIF, IVA, IVB). Поскольку 73 метеорита в такой классификации оказались аномальными (их выделяют в подгруппу неклассифицированных), то существует мнение, что есть и другие химические группы, возможно их - более 50, но они пока недостаточно представлены в коллекциях.

Химические и структурные группы железных метеоритов связаны неоднозначно. Но метеориты из одной химической группы, как правило, имеют похожую структуру и некоторую характерную толщину камаситовых пластинок. Вероятно, метеориты каждой химической группы формировались в близких температурных условиях, быть может, даже в одном родительском теле.

6. Тунгусский метеорит.

Теперь пойдет речь о Тунгусском метеорите:

I. Немного истории.

Некоторые обстоятельства катастрофы.

Ранним утром 30 июля 1908 г. на территории южной части Центральной Сибири многочисленные свидетели наблюдали фантастическое зрелище: по небу летело нечто огромное и светящееся. По словам одних, это был раскалённый шар, другие сравнивали его с огненным снопом колосьями назад, третьем виделось горящее бревно. Двигался по небосводу, огненное тело, оставляя за собой след, как падающий метеорит. Его полёт сопровождался мощными звуковыми явлениями, которые были отмечены тысячами очевидцев в радиусе нескольких сотен километров и вызвали испуг, а кое- где и панику.

Примерно в 7 ч. 15 минут утра жители фактории Ван авара, обосновавшаяся на берегу под каменной Тунгуски, правого притока Енисея, увидели в северной части небосвода ослепительный шар, который казался ярче солнца. Он превратился в огненный столб. После этих световых явлений земля под ногами качнулась, раздался грохот, многократно повторившийся, как громовые раскаты.

Гул и грохот сотрясали все окрест. Звук взрыва был слышан на расстоянии до 1200 км от места катастрофы. Как подкошенные падали деревья, из окон вылетали стёкла, в реках воду гнало мощным валом. Более чем в ста километрах от центра взрыва также дрожала земля, ломались оконные рамы.

Одного из очевидцев отбросило с крыльца избы на три сажени. Как выяснилось позже, ударной волной в тайге были повалены деревья на площади круга радиусом около 30 км. Из-за мощной световой вспышки и потока раскалённых газов возник лесной пожар, в радиусе нескольких десятков километров был сожжен растительный покров.

Отзвуки вызванного взрывом землетрясения были зарегистрированы сейсмографами в Иркутске и Ташкенте, Луцке и Тбилиси, а также в Йене (Германия). Воздушная волна, порождённая небывалым взрывом, два раза обошла земной шар. Она была зафиксирована в Копенгагене, Загребе, Вашингтоне, Потсдаме, Лондоне, Джакарте и в других городах нашей планеты.

Спустя несколько минут после взрыва началось возмущение магнитного поля Земли и продолжалось около четырёх часов. Магнитная буря, судя по описаниям, была очень похожа на геомагнитные возмущения, которые наблюдались после взрывов в земной атмосфере ядерных устройств.

Странные явления происходили во всём мире в течение нескольких суток после загадочного взрыва в тайге. В ночь с 30 июня на 1 июля более чем в 150 пунктах Западной Сибири, Средней Азии, европейской части России и Западной Европы практически не наступала ночь: в небе на высоте около 80 км отчетливо наблюдались светящиеся облака.

В дальнейшем интенсивность «светлых ночей лета 1908 года» резко спала, и уже к 4 июля космический фейерверк в основном завершился. Впрочем, различные световые феномены в земной атмосфере фиксировались до 20-х чисел июля.

Ещё один факт, на который обратили внимание через две недели после взрыва 30 июня 1908 г. На актинометрической станции в Калифорнии (США) отметили резкое помутнение атмосферы и значительное снижение солнечной радиации. Оно было сравнимо с тем, что происходит после крупных вулканических извержений.

А между тем этот год, как сообщали газеты и журналы, изобиловал и другими не менее внушительными и странными как «небесными», так и вполне «земными» событиями.

Так, например, ещё весной 1808г. отмечались необычные половодья рек и сильнейший снегопад (в конце мая) в Швейцарии, а над Атлантическим океаном наблюдалась густая пыль. В печати того времени регулярно появлялись сообщения о кометах, которые были видны с территории России, о нескольких землетрясениях, загадочных явлениях и чрезвычайных происшествиях, вызванных неизвестными причинами.

Остановимся особо на одном интересном оптическом явлении, которое наблюдалось над Брестом 22 февраля. Утром, когда стояла ясная погода, на северо-восточной стороне небосвода над горизонтом появилось светлое блестящее пятно, быстро принимавшее V-образную форму. Она заметно перемещалось с востока на север. Блеск его, сначала очень яркий, уменьшался, а размеры увеличивались. Через полчаса видимость пятна стала очень малой, а спустя ещё полтора часа оно исчезло окончательно. Длина его обеих ветвей была огромна.

И всё же наиболее неожиданные события и явления непосредственно предшествовали катастрофе…

С 21 июня 1908г., т.е. за девять дней до катастрофы, во многих местах Европы и Западной Сибири небо пестрело яркими цветными зорями.

23-24 июня над окрестностями Юрьева (Тарту) и некоторыми другими местами Балтийского побережья вечером и ночью разлились пурпуровые зори, напоминавшие те, что наблюдались четверть века раньше после извержения вулкана Кракатау.

Белые ночи перестали быть монополией северян. В небе ярко светились длинные серебристые облака, вытянутые с востока на запад. С27 июня число таких наблюдений повсеместно стремительно нарастало. Отмечались частые появления ярких метеоров. В природе чувствовалось напряжение, приближения чего-то необычного…

Нужно отметить, что весной, летом и осенью 1908г., как отмечалось позже исследователями Тунгусского метеорита, было зафиксировано резкое повышение болидной активности. Сообщений о наблюдении болидов в газетных публикациях того года было в несколько раз больше, чем в предыдущие годы. Яркие болиды видели в Англии и европейской части России, в Прибалтике и Средней Азии, Сибири и Китае.

В конце июня 1908г. на Катонге - местное название Под каменной Тунгуски - работала экспедиция члена Географического Общества А. Макаренко. Удалось найти его краткий отчёт о работе. В нём сообщалось, что экспедиция произвела съёмку берегов Катонги, сделала промер её глубин, фарватеров и т.д., однако никаких упоминаний о необычных явлениях, в отчёте нет… И это одна из самых больших тайн тунгусской катастрофы. Как могли остаться незамеченными экспедицией Макаренко световые явления и страшный грохот, которым сопровождалось падение такого гигантского космического тела?

К сожалению, до настоящего времени не имеются никаких сведений о том, были ли среди наблюдателей феноменального явления учёные и предпринял ли кто из них попытку разобраться в его сущности, не говоря уже о посещении «по горячим следам» место катастрофы.

Первая же экспедиция, о которой имеются совершенно достоверные данные, была организована 1911г. Омским управлением шоссейных и водных дорог. Её возглавил инженер Вячеслав Шишков, ставший впоследствии известным писателем. Экспедиция прошла далеко от эпицентра взрыва, хотя и обнаружила в районе Нижней Тунгуски огромный вал леса, происхождение которого связать с падением метеорита не удалось.

II . Что сегодня известно .

Характер взрыва. Установлено, что в месте взрыва Тунгусского метеорита (в 70 км к северо-западу от фактории Ван авара) нет сколько-нибудь заметного кратера, который неизбежно появился при ударе о поверхность планеты космического тела.

Это обстоятельство свидетельствует о том, что Тунгусское космическое тело не достигло земной поверхности, а разрушилось (взорвалось) на высоте, примерно, 5-7км. Взрыв не был мгновенным, Тунгусское космическое тело двигалось в атмосфере, интенсивно разрушаясь, на протяжении почти 18км.

Необходимо отметить, что Тунгусский метеорит «занесло» в необычный район-район интенсивного древнего вулканизма, и эпицентр взрыва почти идеально совпадает с центром кратера-жерла гигантского вулкана, функционировавшего в триасом периоде.

Энергия взрыва. Большинство исследователей катастрофы оценивают её энергию в пределах 1023 -1024 эрг. Она соответствует взрыву 500-2000 атомных бомб, сброшенных на Хиросиму, или взрыву 10-40Мт тротила. Часть этой энергии превратилась в световую вспышку, а остальная породила барические и сейсмические явления.

Масса метеорита оценивается различными исследователями от 100 тыс. т. до 1млн. т. Последние подсчёты ближе к первой цифре.

Картина вывала леса. Ударная волна разрушила лесной массив на площади 2150 км2. Эта область по форме напоминает «бабочку», распластанную на поверхности земли, с осью симметрии, ориентированной по направлениям на запад или юго-запад.

Специфична и структура повала леса. В целом он повален по радиусу от центра, но в этой картине центральной симметрии имеются осе симметричные отклонения.

Энергия световой вспышки. Для понимания физики взрыва принципиальный характер имеет вопрос, какая часть его энергии приходится на световую вспышку? В качестве объекта исследований в данном случае выступили длинные заросшие лентовидные «за смолы» на лиственницах, которые отождествлялись со следами лучистого ожога. Область тайги, где прослеживаются эти «за смолы», занимают площадь около 250 км2. Контуры её напоминают эллипс, большая ось которого примерно совпадает с проекцией траектории полёта тела. Эллипсовидная область ожога заставляет думать, что источник свечения имел форму капли, вытянутой вдоль траектории. Энергия световой вспышки, по оценкам, достигала 1023 эрг, т.е. составляла 10% энергии взрыва.

От мощной световой вспышки воспламенилась лестная подстилка. Вспыхнул пожар, отличавшийся от обычных лестных пожаров тем, что лес загорелся одновременно на большой площади. Но пламя тут же было сбито ударной волной. Затем вновь возникли очаги пожара, которые слились, при этом горел не стоячий лес, а лес поваленный. Причём горение происходило не сплошь, а отдельными очагами.

Биологические последствия взрыва. Они связаны с существенными изменениями наследственности растений (в частности, сосен) в этом районе. Там вырос лес, возобновилась флора и фауна. Однако лес в районе катастрофы растёт необычно быстро, причём не только молодняк, но и 200-300-летние деревья, случайно уцелевшие после взрыва. Максимум таких изменений совпадает с проекцией траектории полёта Тунгусского космического тела. Кажется, причина ускоренного прироста действует и в настоящее время.

Параметры траектории полёта. Для уяснения физических процессов, вызвавших взрыв Тунгусского космического тела, очень важно знать направление его полёта, а также угол наклона траектории к плоскости горизонта и, конечно, скорость. По всем известным до 1964г. материалами Тунгусское космическое тело двигалось по наклонной траектории почти с юга на север (южный вариант). Но после тщательного изучения вывала леса был сделан другой вывод: проекция траектории полёта направлена с востока юго-востока на запад северо-запад (восточный вариант). При этом непосредственно перед взрывом Тунгусского космического тела двигалось почти строго с востока на запад (азимут траектории 90-950).

В связи с тем, что расхождение направлений двух вариантов траектории достигает 350, то можно предположить: направление движения Тунгусского метеорита в ходе его полёта изменилась.

Большинство специалистов склоняются к мысли, что угол наклона восточной траектории к горизонту, как и южной, был относительно пологим и не превышал величины 10-200. Называют также значения 30-350и 40-450. Вполне возможно, что наклон траектории также менялся в процессе движения Тунгусского космического тела.

Различны и высказывания о скорости полёта Тунгусского метеора; единицы и десятки километров в секунду.

Вещество Тунгусского метеора. После установления факта взрыва над землёй утратил свою остроту поиск крупных осколков метеорита. Поиск же «мелко раздробленного вещества» Тунгусского метеорита начались с 1958г., но упорные попытки обнаружить в районе катастрофы какое-либо рассеянное вещество Тунгусского космического тела не увенчались успехом и до нашего времени.

Дело в том, что в почвах и торфах района катастрофы удалось выявить до пяти видов мелких частиц космического происхождения (в том числе силикатные и железоникелевые), однако отнести их к Тунгусскому метеориту не представляется пока возможным. Они, скорее всего, представляют собой следы фоновых выпадений космической пыли, которые происходят повсеместно и постоянно.

Здесь нужно учитывать и то, что наличие в районе катастрофы большого количества древних лавовых потоков, скоплений вулканического пепла и т.д. создают чрезвычайно неоднородный геохимический фон, что, значительно осложняет поиски вещества Тунгусского метеорита.

Геомагнитный эффект. Спустя несколько минут после взрыва началась магнитная буря, которая продолжалась более 4 часов. Это похоже на геомагнитные возмущения, наблюдавшиеся после высотных взрывов ядерных устройств.

Тунгусский взрыв вызвал и ярко выраженное перемагничивание почв в радиусе примерно 30 км вокруг центра взрыва. Так, например, если за пределами района взрыва вектор намагниченности закономерно ориентирован с юга на север, то около эпицентра направленность его практически теряется. Достоверного объяснения такой «магнитной аномалии» сегодня не имеется…

III . Гипотезы, версии, предположения.

Следы ведут на солнце.

В начале 80-х годов сотрудники Сибирского отделения АН СССР кандидаты физико-математических наук А. Дмитриев и В. Журавлёв выдвинули гипотезу о том, что Тунгусский метеорит является плазмоидом, оторвавшимся от Солнца.

С мини-плазмоидами - шаровыми молниями - человечество знакомо давно, хотя природа их до конца не изучена. А вот одна из последних новостей науки: Солнце является генератором колоссальных плазменных образований с ничтожно малой плотностью.

Действительно, современная космофизика допускает возможность рассматривать нашу Солнечную систему, стабильность которой «поддерживает» не

только закон всемирного тяготения, но также энергетические, вещественные и информационные взаимодействия. Другими словами, между различными планетами и центральным светилом существует механизм информационно-энергетического взаимодействия.

Одним из конкретных результатов взаимодействия между Землёй и Солнцем могут быть космические тела нового типа, коронарные транзиенты, модель которых предложил геофизик К. Иванов.

Дмитриев и Журавлёв в качестве рабочей гипотезы допускают возможность образования в космосе так называемых микротранзиентов, т.е. плазменных тел средних размеров (всего сотни метров). Рассматриваемые «микроплазмоиды», или «энергофоры», т.е. носили энергозарядов в межпланетном космическом пространстве, могут захватываться магнитосферой Земли и дрейфовать по градиентам её магнитного поля. Более того, они могут как бы «наводиться» в район магнитных аномалий. Невероятно, чтобы плазмоид мог достичь поверхности Земли, не взорвавшись в её атмосфере. Согласно предположению Дмитриева и Журавлёва Тунгусский болид принадлежал как раз к таким плазменным образованием Солнца.

Одним из главных противоречий тунгусской проблемы является несоответствие расчетной траектории метеорита, основанной на показаниях очевидцев, и картины вывала леса, составленной томскими учёными. Сторонники кометной гипотезы отбрасывают эти факты и многие свидетельства очевидцев. В отличие от них Дмитриев и Журавлёв исследовали «словесную» информацию, применив математические методы формализации сообщений «свидетелей» события 30 июня 1908г. В компьютер были заложены более тысячи различных описаний. Но «коллективный портрет» космического пришельца явно не удался. ЭВМ поделила всех наблюдателей на два главных лагеря: восточный и южный, и вышло, что наблюдатели видели два разных болида - настолько разнятся время и направление полёта.

Традиционная метеоритика пасует перед «раздвоением» Тунгусского метеорита во времени и пространстве. Чтобы два гигантских космических тела следовали встречным курсом и с интервалом в несколько часов?! Но Дмитриев и Журавлёв не видят в этом ничего невозможного, если допустить, что это был плазмоид. Оказываются, что галактические плазмоиды имеют «привычку» существовать парами. Это качество, возможно, свойственно и солнечным плазмоидам.

Выходит, что 30 июня 1908г. над Восточной Сибирью снижались не менее двух «огненных объектов». Поскольку плотная атмосфера Земли для них враждебна, то «небесный дуэт» пришельцев взорвался...

Об этом свидетельствует, в частности, ещё одна «солнечная» гипотеза происхождения Тунгусского метеорита, которая была предложена же доктором минералогических наук А. Дмитриевым в наше время (Комсомольская правда.-1990.-12июня).

Резкая убыль озона в атмосфере уже наблюдалась в истории Земли. Так группа учёных во главе с академиком К. Кондратьевым опубликовало недавно результаты исследований, судя по которым с апреля 1908г. отмечалось существенное разрушение озонного слоя в средних широтах Северного полушария. Эта стратосферная аномалия, ширина которой составила 800-1000км, опоясала весь земной шар. Так продолжалось до 30 июня, после чего озон стал восстанавливаться.

Случайно ли такое совпадение по времени двух планетарных событий? Какова природа механизма, вернувшего земную атмосферу к «равновесию? Отвечая на эти вопросы, Дмитриев считает, что на угрожавшую биосфере Земли в 1908г. резкую убыль озона среагировало Солнце. Мощный сгусток плазмы, обладающий озоногенерирующей способностью, был выброшен светилом в направлении нашей планеты. Этот сгусток сблизился с Землёй в районе Восточно-Сибирской магнитной аномалии. По мнению Дмитриева, Солнце не допустит озонового «голодания» на Земле. Получается, что чем энергичнее будет человечество разрушать озон, тем гуще будет поток газоплазменных образований типа «энергофоров», посылаемых Солнцем. Не нужно быть пророком, чтобы представить, к чему может привести подобный нарастающий процесс. Сценарий развития событий на нашей планете, подвергающейся не трудно, вспомнить о тунгусской трагедии 1908г...

«Рикошет»

Оригинальную гипотезу, объясняющую некоторые обстоятельства падения Тунгусского метеорита, выдвинул ленинградский учёный, доктор технических наук, профессор Е. Иорданишвили.

Известно, что вторгающееся в земную атмосферу тело, если его скорость составляет десятки километров в секунду, «загорается» на высотах 100-130км. Однако часть очевидцев Тунгусского космического тела находились в среднем течении Ангары, т.е. на расстоянии нескольких сотен километров от места катастрофы. Учитывая кривизну земной поверхности, они не могли наблюдать этого явления, если не допустить, что Тунгусский метеорит раскалился на высоте не менее 300-400км. Как объяснить эту явную несовместимость физически и фактически наблюдаемой высоты загорания Тунгусского космического тела? Автор гипотезы попытался свои предположения, не выходя за рамки реальности и не противореча законам ньютоновой механики.

Иорданишвили считал, что в то памятное многим утро к Земле действительно приближалось небесное тело, летевшее под малым углом к поверхности нашей планеты. На высотах 120-130 км оно раскалилось, а его длинный хвост наблюдали сотни людей от Байкала до Ван-авары. Коснувшись Земли, метеорит «срикошетил», подскочил на несколько сот километров вверх, и это позволило наблюдать его и со среднего течения Ангары. Затем Тунгусский метеорит, описав параболу и потеряв свою космическую скорость, действительно упал на Землю, теперь уже навсегда...

Гипотеза обычного, хорошо всем известного из школьного курса физики «рикошета» позволяет объяснить целый ряд обстоятельств: появление раскаленного светящегося тела выше границы атмосферы; отсутствие кратера и вещества Тунгусского метеорита в месте его «первой» встречи с Землёй; явление «белых ночей 1908г.», вызванное выбросом в стратосферу земного вещества при столкновении с Тунгусским космическим телом, и т.д. Кроме того, гипотеза космического «рикошета» проливает свет на ещё одну неясность - «фигурный» вид (в виде «бабочки») вывала леса.

Используя законы механики, можно рассчитать и азимут дальнейшего движения Тунгусского метеорита, и предполагаемое место, где находится и сейчас Тунгусское космическое тело целиком или в осколках. Учёный даёт такие ориентиры: линия от стойбища Ван авара до устья рек Дуб чес или Вороговка (притоки Енисея); место - отроги Енисейского кряжа или на просторах тайги в междуречье Енисея и Иртыша… Отмечу, что в отчетах и публикациях ряда экспедиций 50-60-х годов имеются ссылки на кратеры и вывалы леса в бассейнах западных притоков Енисея - рек Сым и Кеть. Эти координаты примерно совпадают с продолжением направления траектории, по которой, как предполагается, Тунгусский метеор подлетал к Земле.

Например, одна из последних публикаций о Тунгусском метеоре (см. Комсомольская правда.-1992г.-6 февраля). В ней говорится о том, что таёжный промысловик В.И. Воронов в результате многолетних поисков отыскал в 150км к юго-востоку от предполагаемого места взрыва Тунгусского метеорита («куликовский вывал») ещё один вывал леса диаметром до 20км, который, как предполагают, был найден ещё в 1911г. экспедицией В. Шишкова. Этот последний вывал может быть, связан с Тунгусским метеоритом, если допустить, что в процессе полета он распался на отдельные части.

Больше того, осенью 1991г. всё тот же неугомонный Воронов обнаружил примерно в 100км к северо-западу от «куликовского вывала» огромную воронку (глубиной 15-20м и диаметром около 200м), густо заросшую сосняком. Некоторые исследователи полагают, что она может являться именно тем местом, где нашел своё последнее пристанище «космический гость 1908 года, "(ядро или куски) Тунгусского метеорита.

Электроразрядный взрыв.

Здесь рассматривается эффект элекроразрядного взрыва крупных метеоритных тел при полёте в атмосфера планет.

Дело заключается в том, что когда, например, в земную атмосферу вторгается крупный, движущийся с большой скоростью метеорит, то, как показывают расчёты Невского, образуются сверхвысокие электрические потенциалы, и между ними и поверхностью Земли происходит гигантский электрический «пробой». В этом случае за короткое время кинетическая энергия метеорита переходит в электрическую энергию разряда, что приводит к взрыву небесного тела. Такой электроразрядный взрыв позволяет объяснить большинство до сих пор непонятных явлений, сопровождающих падение на земную поверхность крупных космических тел, таких, например, как Тунгусский метеорит.

Рассматриваемая гипотеза показывает, что существуют три основных источника мощных ударных волн. Взрывное выделение очень большой энергии в почти цилиндрическом объёме «огненного столба» породило очень мощную цилиндрическую ударную волну, её вертикальный фронт распространялся горизонтально поверхности и сама волна стала главным виновником вывала леса на обширной площади. Однако эта ударная волна, в которой выделилась большая часть энергии разряда, была не единственной. Образовались ещё две ударные волны. Причиной одной из них было взрывообразное дробление материала космического тела, а другая была обыкновенной баллистической ударной волной, возникающей в земной атмосфере при полёте любого тела со сверхзвуковой скоростью.

Такое протекание событий подтверждают рассказы свидетелей катастрофы о трех независимых взрывах и последующей «артиллерийской канонаде», объясняемой разрядом через многочисленные каналы. Нужно сказать, что признание факта многоканального электроразрядного взрыва объясняет многие факты, связанные с Тунгусским метеоритом, включая самые непонятные и таинственные. Не вдаваясь в детали и тонкости гипотезы Невского, перечислим только наиболее важные из них:

Наличие индивидуальных разрядных каналов объясняет существование обширной области с хаотическим вывалом леса;

Действие сил электростатического притяжения (является электростатической левитации) объясняет факты подъёма в воздух юрт, деревьев, верхних слоёв почвы, а также образование больших волн, шедших против течения в реках;

Наличие области максимальной концентрации пробойных каналов может образовать мелкий кратер, ставший впоследствии болотом, которое, как выяснилось, не существовало до взрыва;

Следствием растекания по водоносным пластам гигантских в момент разряда токов, нагревших воду в подземных горизонтах, можно объяснить появление горячих («кипящих») водоемов и гигантских фонтанов-гейзеров;

Мощные импульсные токи, возникшие при электроразрядном взрыве метеорита, могут создать столь же мощные импульсные магнитные поля и пере магнитить геологические пласты грунта, отстоящих от эпицентра взрыва на 30-40 км, что и было обнаружено в районе взрыва Тунгусского космического тела;

Появление необъяснимых пока однозначно «белых ночей 1908г.» можно объяснить электрическим свечением ионосферных слоёв атмосферы, вызванных их возмущением при полёте и взрыве космического тела, и т.д.

Последнее обстоятельство частично подтверждается наземными наблюдениями 16 ноября 1984г., сделанными во время возвращения на Землю американского корабля многоразового использования «Дискавери». Возвращаясь в земную атмосферу со скоростью, которая почти в 16 раз превышала скорость звука, он на высоте около 60 км наблюдался в виде огромного огненного шара с широким хвостом, но самое главное вызвал длительное свечение верхних слоёв атмосферы.

Имеется целый ряд «таинственных явлений», описываемых, например, очевидцами падения Тунгусского метеорита, как «шипящий свист» или «шум, как от крыльев испуганной птицы», и т.д. Так вот, что касается подобных «звуковых эффектов», то они всегда сопровождают короткие электрические разряды.

Таким образом, можно отметить, что физические процессы, сопровождающие электроразрядный взрыв метеорита, позволяют воспроизвести картину внешних проявлений данного эффекта и объясняют с научных позиций некоторые обстоятельства падения наиболее крупных метеоритов, таких, например, как Тунгусский метеорит.

8. Заключение.

Земля, как и другие планеты, регулярно испытывает столкновения с космическими телами. Обычно их размер невелик, не более песчинки, но за 4,6 млрд. лет эволюции случались и ощутимые удары; их следы заметны на поверхности Земли и других планет. С одной стороны, это вызывает естественное беспокойство и желание предвидеть возможную катастрофу, а с другой - любопытство и жажду исследовать попавшее на Землю вещество: кто знает, из каких космических глубин оно прибыло? Поэтому неутомима и жажда знания, заставляющая людей задавать всё новые и новые вопросы о мире и настойчиво искать ответы на них.

СПИСОК ЛИТЕРАТУРЫ:

1. Рожанский И.Д. Анаксагор. М: Наука, 1972

2. Гетман В.С. Внуки Солнца. М: Наука, 1989.

3. Флейшер М. Словарь минеральных видов. М: «Мир», 1990, 204 с.

4. Симоненко А.Н. Метеориты - осколки астероидов. М: Наука, 1979.

5. И. А. Климишин. Астрономия наших дней. - М.: «Наука».,1976. - 453 с.

6. А. Н. Томилин. Небо Земли. Очерки по истории астрономии/ Научный редактор и автор предисловия доктор физико-математических наук К. Ф. Огородников. Рис. Т. Оболенской и Б. Стародубцева. Л., «Дет. лит.», 1974. - 334 с., ил.

7. Энциклопедический словарь юного астронома/ Сост. Н. П. Ерпылев. - 2-е изд., перераб. и доп. - М.: Педагогика, 1986. - 336с., ил.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png